Convergence of Unsymmetric Kernel-Based Meshless Collocation Methods
نویسنده
چکیده
This paper proves convergence of variations of the unsymmetric kernel-based collocation method introduced by E. Kansa in 1986. Since then, this method has been very successfully used in many applications, though it may theoretically fail in special situations, and though it had no error bound or convergence proof up to now. Thus it is necessary to add assumptions or to make modifications. Our modifications will prevent numerical failure and allow a rigorous mathematical analysis proving error bounds and convergence rates. These rates improve with the smoothness of the solution, the domain, and the kernel providing the trial spaces, but they are currently not yet optimal and deserve refinement. They are based on rates of approximation to the residuals by nonstationary meshless-kernel-based trial spaces, and they are independent of the type of differential operator. The results are applicable to large classes of linear problems in strong form, provided that there is a smooth solution and the test and trial discretizations are chosen with some care. Our analysis does not require assumptions like ellipticity, and it can be extended to ill-posed problems.
منابع مشابه
Stable and Convergent Unsymmetric Meshless Collocation Methods
In the theoretical part of this paper, we introduce a simplified proof technique for error bounds and convergence of a variation of E. Kansa’s well-known unsymmetric meshless collocation method. For a numerical implementation of the convergent variation, a previously proposed greedy technique is coupled with linear optimization. This algorithm allows a fully adaptive on-the-fly data-dependent m...
متن کاملUnsymmetric meshless methods for operator equations
A general framework for proving error bounds and convergence of a large class of unsymmetric meshless numerical methods for solving well-posed linear operator equations is presented. The results provide optimal convergence rates, if the test and trial spaces satisfy a stability condition. Operators need not be elliptic, and the problems can be posed in weak or strong form without changing the t...
متن کاملA Meshless Collocation Method Based on the Differential Reproducing Kernel Approximation
A differential reproducing kernel (DRK) approximation-based collocation method is developed for solving ordinary and partial differential equations governing the oneand two-dimensional problems of elastic bodies, respectively. In the conventional reproducing kernel (RK) approximation, the shape functions for the derivatives of RK approximants are determined by directly differentiating the RK ap...
متن کاملRecovery of Functions From Weak Data Using Unsymmetric Meshless Kernel-Based Methods
Recent engineering applications successfully introduced unsymmetric meshless local Petrov-Galerkin (MLPG) schemes. As a step towards their mathematical analysis, this paper investigates nonstationary unsymmetric Petrov-Galerkin-type meshless kernel-based methods for the recovery of L2 functions from finitely many weak data. The results cover solvability conditions and error bounds in negative S...
متن کاملWhy Does MLPG Work?
This is a short summary of recent mathematical results on error bounds and convergence of certain unsymmetric methods, including variations of Kansa’s collocation technique and Atluri’s MLPG method. The presentation is kept as simple as possible in order to address a larger community working on applications in Science and Engineering. Introduction and Summary The Meshless Local Petrov-Galerkin ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- SIAM J. Numerical Analysis
دوره 45 شماره
صفحات -
تاریخ انتشار 2007